Semiparametric curve alignment and shift density estimation with application to neuronal data

نویسندگان

  • T. Trigano
  • U. Isserles
چکیده

Suppose we observe a large number of curves, all with identical, although unknown, shape, but with a different random shift. The objective is to estimate the individual time shifts and their distribution. Such an objective appears in several biological applications, in which the interest is in the estimation of the distribution of the elapsed time between repetitive pulses with a possibly low signalnoise ratio, and without a knowledge of the pulse shape. We suggest an M-estimator leading to a threestage algorithm: we split our data set in blocks, on which the estimation of the shifts is done by minimizing a cost criterion based on a functional of the periodogram; the estimated shifts are then plugged into a standard density estimator. We show that under mild regularity assumptions the density estimate converges weakly to the true shift distribution. The theory is applied both to simulations, as well as to alignment of real ECG signals. The estimator of the shift distribution performs well, even in the case of low signal-to-noise ratio, and it outperforms the standard methods for curve alignment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric density estimation of shifts between curves

In this paper we address a problem related to curve alignment with a semiparametric framework, that is without any knowledge of the shape. This problem appears in many biological applications, in which we are interested in the estimation of the elapsed duration distribution between two signals, but wish to estimate it with a possibly low signal-noise ratio, and without any knowledge of the puls...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Extended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy

Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...

متن کامل

Wavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors

Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009